Transmembrane Electron Transport in Plasma Membrane Vesicles Loaded with an NADH-Generating System or Ascorbate.

نویسندگان

  • P Askerlund
  • C Larsson
چکیده

Sugar beet (Beta vulgaris L.) leaf plasma membrane vesicles were loaded with an NADH-generating system (or with ascorbate) and were tested spectrophotometrically for their ability to reduce external, membrane-impermeable electron acceptors. Either alcohol dehydrogenase plus NAD(+) or 100 millimolar ascorbate was included in the homogenization medium, and right-side-out (apoplastic side-out) plasma membrane vesicles were subsequently prepared using two-phase partitioning. Addition of ethanol to plasma membrane vesicles loaded with the NADH-generating system led to a production of NADH inside the vesicles which could be recorded at 340 nanometers. This system was able to reduce 2,6-dichlorophenolindophenol-3'-sulfonate (DCIP-sulfonate), a strongly hydrophilic electron acceptor. The reduction of DCIP-sulfonate was stimulated severalfold by the K(+) ionophore valinomycin, included to abolish membrane potential (outside negative) generated by electrogenic transmembrane electron flow. Fe(3+)-chelates, such as ferricyanide and ferric citrate, as well as cytochrome c, were not reduced by vesicles loaded with the NADH-generating system. In contrast, right-side-out plasma membrane vesicles loaded with ascorbate supported the reduction of both ferric citrate and DCIP-sulfonate, suggesting that ascorbate also may serve as electron donor for transplasma membrane electron transport. Differences in substrate specificity and inhibitor sensitivity indicate that the electrons from ascorbate and NADH were channelled to external acceptors via different electron transport chains. Transplasma membrane electron transport constituted only about 10% of total plasma membrane electron transport activity, but should still be sufficient to be of physiological significance in, e.g. reduction of Fe(3+) to Fe(2+) for uptake.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Ascorbate Free Radical as an Electron Acceptor to Cytochrome b-Mediated Trans-Plasma Membrane Electron Transport in Higher Plants.

The action of ascorbate free radical as an electron acceptor to cytochrome b-mediated trans-plasma membrane electron transport is demonstrated. Addition of ascorbate free radical to ascorbate-loaded plasma membrane vesicles caused a rapid oxidation of the cytochrome, followed by a slower re-reduction. The fully reduced dehydroascorbate was ineffective.

متن کامل

Control of Cell Growth by Plasma Membrane NADH Oxidation

Most cells that have been tested have two trans plasma membrane electron transport systems for the oxidation of cytosolic NADH. The first is an oxidase which transfers electrons from NADH to oxygen through dehydrogenases to coenzyme Q and a terminal reduced coenzyme Q oxidase. The second system for trans membrane electrontransport from NADH is a protein complex called porin or Voltage Dependent...

متن کامل

The Role of Ascorbate Free Radical as an Electron Acceptor to Cytochrome 6-Mediated Trans-Plasma Membrane Electron Transport in Higher Plants'

In highly purified plasma membrane fractions of at least six higher plant species, a specific high-potential b-type Cyt (redox potential at pH 7.0 between +120 and +160 mV, a band at 560-561 nm) has been detected (Asard et al., 1989; Askerlund et al., 1989). This component is reducible in vitro by sodium ascorbic acid and constitutes 60 to 80% of the total Cyt amount detectable in plant plasma ...

متن کامل

Transplasma membrane electron transport comes in two flavors.

All tested cells possess transplasma membrane electron transfer (tPMET) systems that are capable of reducing extracellular electron acceptors at the cost of cytosolic electron donors. In mammals, classically NAD(P)H- and NADH-dependent systems have been distinguished. The NADH-dependent system has been suggested to be involved in non-transferrin-bound iron (NTBI) reduction and uptake. Recently ...

متن کامل

Genetic evidence for coenzyme Q requirement in plasma membrane electron transport.

Plasma membranes isolated from wild-type Saccharomyces cerevisiae crude membrane fractions catalyzed NADH oxidation using a variety of electron acceptors, such as ferricyanide, cytochrome c, and ascorbate free radical. Plasma membranes from the deletion mutant strain coq3delta, defective in coenzyme Q (ubiquinone) biosynthesis, were completely devoid of coenzyme Q6 and contained greatly diminis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 96 4  شماره 

صفحات  -

تاریخ انتشار 1991